
N87-28335 1
APPENDIX -- Concurrent Simulation of a Parallel Jav'Bnd Effector 5

SIMULATION OF A PARALLEL JAW END EppwrrOR 4
Bill Bynum

Department of Computer Science
College of William and Mary

Williamsburg, VA 23 185

This paper is an initial report on a system of programs developed to aid in the design

and development of the commandhesponse protocol between a parallel jaw end effector and
the strategic planner program controlling it. The system executes concurrently with the LISP
controlling program to generate a graphical image of the end effector that moves in

approximately real time in response to commands sent from the controlling program.
Concurrent execution of the simulation program is useful for revealing flaws in the
communication command structure arising from the asynchronous nature of the message
traffic between the end effector and the strategic planner. Software simulation helps to
minimize the number of hardware changes necessary to the microprocessor driving the end

effector because of changes in the communication protocol. The simulation of other actuator
devices can be easily incorporated into the system of programs by using the underlying

support that has been developed for the concurrent execution of the simulation process and

the communication between it and the controlling program.

APPENDIX -- Concurrent Simulation of a Parallel Jaw End Effector

INTRODUCTION

6

One of the current research projects in the Automation and Technology Branch at the

NASA/Langley Research Center on remote teleoperator control of robotic manipulators is the
Distributed Artificially Intelligent System for Interacting with the Environment (DAISIE)

[1,2,31, a system developed by Nancy Orlando of NASA that combines artificially intelligent,
goal-structured robot planning algorithms with traditional control methods for mechanical

equipment. In the DAISIE system, communication between the strategic planner and the
various sensors and devices of the system is of paramount importance. When a new device is
incorporated into the system, the set of commands that the device will accept and the
responses that it will return must be specified, and then this command protocol has to be

encoded in a form usable by the processor that controls the device. In the case of an end
effector, the specification d the command protocol is straightforward, but conveying the

protocol to the proms- controlling the end effector consists of burning the communcatim
protocol program into tho ROM d the processor. Unfortunately, it is impossible to forsee

every eventuality when specifying a command protocol, and this leads to frequent
modifications. Also, the subsequent incorporation d other devices into the DAISIE system
could require changes in existing protocols. Modification of command protocols leads to the
iteration of the previously described two-step process several times in develop- a
satisfactq command structure. The associated expense and effort of this process justify the
use of software simulation to design and develop command protocols between the devices in

the DAISIE system and the strategic planner.

The DAISIE system is housed in the Intelligent Systems Research Laboratory at
NASA/Langley. The equipment in the laboratory includes a VAXl1-750 (VMS), two PDP11-
based workstations, two Unimate PUMA six-joint robotic manipulators equipped with either

vacuum operated or parallel jaw end effectors, a vision system, and a data acqubtion system.

The equipment in the Lab is interconnected through an RTNET communication network and

APPENDIX -- Concurrent Simulation of 1 Parallel Jav End Effector 7

can also be linked via analog channels to a CYBER 175 real-time control system. A more
complete description of the Lab is contained in [11.

The graphics display of the end effector is generated on a DEC VSl l graphics terminal.
Acceptable refresh rates are obtained by associated VS11 memory plane hardware, which

overlaps storage of a future image in RAM with display of the current image. Movement of
the end effector from one gap opening to another is portrayed by subdividing the total gap

into smaller parts and showing the end effector in each of the intermediate positions. The
speed of the movement is directly related to the number of subdivisions chosen and can be

varied from barely perceptible to almost instantaneous. The user interacting with the LISP
controlling program can be located at any terminal connected to the VAX and need not be
using the VSll terminal.

Inter process communication and the simulation of concurrency is implemented

through the use of the V A X N M S system subroutines, accessible from FORTRAN 141. These

routines provide concurrently executing processes in the system the capability of
communication through "mailboxes" and of synchronization through "event flags."
Additionally, t h e is a system subroutine with which 8 proatas can "create" (OT, initiate
execution of) another process.

The strategic planner for the DAISIE system is being written in the version of LISP
used on the ISRL VAX, Pram LISP. This LISP provides the facility to incorporate dynamically
into the LISP environment separately compiled FORTRAN subroutines and functions, callable

IS LISP functions. This feature allows a LISP program to control the graphics, concurrency,

and communications capabilites described abwe.

STRUCTURE OF THE SIMULATION SYSTEM

The simulation system is composed of three main parts:

APPJiNDIX -- Concurrent Simulation of a Parallel Jaw'Bnd Rffector 8

the controlling LISP program.

a collection of FORTRAN subroutines imported by the LISP program to initiate

execution of, and then to communicate with, the third part of the system.

0 the FORTRAN program for the overall control of the communications and graphics

subroutines which produce the simulation of the end effector.

To begin a simulation session, the user must load the file of LISP amtrol functions into
Franz LISP and initiate the master function at the top level. This function begins an
initialization sequence that imports the necessary FORTRAN subroutines into the LISP
environment.

One of these imported FORTRAN subroutines is called to start the simulation. This

subroutine initializes the graphics display, the interprocess mailboxes, and event flag clusters,
and then creates, as a separate process, the FORTRAN program that generates the graphics
and simulates the end effector. Two mailboxes are created, one for commands sent from the

controlling LISP p r w r m to the simulation program and the other for responses going the
other way. Because VMS has a wait-for-offspring rule, this initialization subroutine executes
to completion, but CulIlot terminate until the process that it created, the end effector
simulation proass, terminates. This ensures that the event flag cluster and the mailboxes
that it creates continue to exist. Creating "permanent" mailboxes is another alternative, but

the method chosen requires less privilege from VMS. At termination of the initialization

subroutine, control returns to the calling LISP program, unlocking the keyboard and allowing

additional LISP functions to be invoked.

The command and response information exchanged by the LISP strategic planner

program and the actual end effector has the format of a five character field accompanied by a
six-vector of real numbers. Each device in the DAISIE system communicates us@ this same

APPENDIX -- Concurrent Simulation d 8 Parallel J8v h d Rffector 9

command/response format; this is me of the strengths of the design of the system. The
character field gives the source and destination of the command or response, as well as the

basic command or response. The six-vector of real numbers contains modifying information.

For example, in the case of a move command, this information would include the type of
move (ratchetl positional, etc.), and the end condition desired, along with any necessary
parameters, such as rate gains, desired jaw gap or maximum jaw force at termination. In the

case of a response to a status request, the six-vector contains the current and target jaw gaps,
position and rate gains, and information from proximity and cross-fire detectors located on

the end effector.

As a convenience to the user, each of the commands sent to the end effector sirnulatar

is embodied as a LISP function. This relieves the user of the burden of real-time parenthesis
matching and of having to memorize the exact command formats and the encoding of their
fields. Each of these LISP functions transforms its command into the DAISIE format and

invokes one of the imported PORTRAN subroutines to place the command message into the
command mailbox and set an associated event flag. The process simulating the end effector
is waiting on this event Mw. When the M a g is set, the process retrieves the command from
the mailbox and acts on it.

The mare and initialize commands are enqueued by the simulation program for

subsequent action, whereas the quit, status request, and debug commands receive an
immediate reply. Commands involving movement of the end effector are enqueued because,

in general, they require a longer time to complete than a status request. With this program
structure, it is possible for the LISP driver program to issue a sequence of move commands

and then to monitor their progress through a series of status requests.

When a command has been completed, the simulation process sends a reply to the LISP

program by placing an appropriately formatted message in the reply mailbox and setting the
associated went flag. A t present, the simulation program assumes that all commands

. \ I
1 .

APPENJ)II -- hcurrent Simulation of a Prtallel Jaw Rnd Blfectoc 10

complete successfully, although random failure reports could be easily introduced into the

simulation program in the future. The quit command causes the release of the system
mailboxes and event flag cluster, as well as the termination of the LISP driver function, the
graphics program, and the initialization process that created it.

The debug command is not really a part of the D A N E command structure, but was

added to be able to obtain debugging information during the development of the simulation
system. With it, the user can toggle the display of four different types of debugging
information: event flag behavior, inter process communication, end effector control, and
graphics information.

DISCUSSION

This simulation system has been useful in revealing places where changes might be

needed in the command structure. For example, since the response to the completion of a

command, particularly a move command, can be widely separated in time from the command
that was sent, it is difficult for the LISP program to associate the responses received with the
command that was given. This hdicrte3 thgt perhaps the format of the DAISIE command

should be expanded to include a sequence number to aid the LISP program in associating the
response with the command sent.

I t is a straightforward matter now to add simulators for the other devices used by the
DAISIE system, such as force-torque of tactile msar3. The graphical representation of the

state of device be- simulated, althowh useful in the case of the end effector, is not essential
to be able to incorporate the device into the 8imulaticm system for the purpose of developing
and testing its command/tesponse protocol. Incorporating additional devices into the

simulation system will be useful in pinpintmg situations where the responses from different

devices preent conflicting, ambiguous, or redundant information to the LISP constrollmg
program. I t is anticipated that the apability d tucmssively enlarging the collection of

APPBNDIX -- Concurrent Simulation d a Parallel Jav End Effector 11

command/reply protocols with which the LISP controlling program must deal will be a

valuable tool in isolating unforseen problems in the command structure well in advance of

the final cod- for the strategic planner.

1. Harrison, F.W. and Orlando, N.E., "A Systems-Level Approach to Automation Research",
Proceedings of the 1984 Robotics Conference at the University of Alabama at Huntsville,
Huntsville, Alabama, April 1984.

2. Orlando, N E , "A System fot Intelligent Teleoperator Research", presented at the AIAA
Computers in Aerospace IV Conference, Hartford, Connecticut, October 1983.

3. Orlando. N.B., "An Intelligent Robotics Control Scheme", presented at the American
Controls Werence, San Diego, California, June 1984.

4. VAX/VMS System Services Reference Manual, Digital Equipment Corporation, Maynard,
Massachusetts.

